
1

Constraint Programming with
Mozart – An Appetizer

Christian Schulte
KTH – Royal Institute of Technology, Sweden
schulte@imit.kth.se

Goal of Appetizer� Underlying principles� Sketch of how to do in Oz� Modeling techniques� Mozart advantages and disadvantages

…no time for hands-on tutorial

Constraint Programming� Modeling and solving combinatorial
problems

start with a first toy problem

Send More Money (SMM)� Find distinct digits for letters, such that

MONEY=

MORE+

SEND

Constraint Model for SMM� Variables and values
S,E,N,D,M,O,R,Y ∈ {0,…,9}� Constraints

distinct(S,E,N,D,M,O,R,Y)

1000 ×S+100×E+10×N+D

+ 1000 ×M+100×O+10×R+E

= 10000 ×M+1000×O+100×N+10×E+Y

S≠0 M≠0

Solving SMM� Find values for variables
such that

all constraints satisfied� Enumerate values, test constraints…
…poor: we can do better than that!

2

Constraint Programming� Compute with set of possible values� as opposed to assignments � Prune impossible values� constraint propagation� Search� distribute search tree of

simpler subproblems� explore find solution in tree

Propagation for SMM� Results in
S=9 E ∈{4,…,7} N ∈{5,…,8} D ∈{2,…,8}

M=1 O=0 R ∈{2,…,8} Y ∈{2,…,8}� Propagation alone not sufficient!� create simpler sub-problems� distribution and exploration

Overview� Principles� constraint propagation� search� Summary of principles and significance� Modeling techniques� Oz and Mozart

Principles:
Constraint Propagation

Important Concepts� Constraint store� Basic constraint� Propagator� Non-basic constraint� Constraint propagation

Constraint Store� Stores basic constraints
map variables to possible values

x∈{3,4,5} y∈{3,4,5}

3

Constraint Store� Stores basic constraints
map variables to possible values

x∈{3,4,5} y∈{3,4,5}

finite domain constraints

Constraint Store� Stores basic constraints
map variables to possible values� Domains: finite sets, real intervals, trees, …

x∈{3,4,5} y∈{3,4,5}

Propagators� Implement non-basic constraints

distinct(x 1,…,x n)

x + 2 ×y = z� smart algorithmic components

Propagators� Amplify store by constraint propagation

x∈{3,4,5} y∈{3,4,5}

x≥y y>3

Propagators� Amplify store by constraint propagation

x∈{3,4,5} y∈{3,4,5}

x≥y y>3

Propagators� Amplify store by constraint propagation

x∈{3,4,5} y∈∈∈∈{4,5}

x≥y y>3

4

Propagators� Amplify store by constraint propagation

x∈{3,4,5} y∈∈∈∈{4,5}

x≥≥≥≥y y>3

Propagators� Amplify store by constraint propagation

x∈∈∈∈{4,5} y∈{4,5}

x≥≥≥≥y y>3

Propagators� Amplify store by constraint propagation� Disappear when done (entailed)� no more propagation possible

x∈{4,5} y∈{4,5}

x≥y y>3

Propagators� Amplify store by constraint propagation� Disappear when done (entailed)� no more propagation possible

x∈{4,5} y∈{4,5}

x≥y

Computation Space� Store with connected propagators

x∈{4,5} y∈{4,5}

x≥y y>3 Principles: Search

5

Important Concepts� Distribution� Exploration� Heuristics� Best solution search

Distribution (Branching)� Yields spaces with additional constraints� Enables further constraint propagation

x∈{4,5} y∈{4,5}

x≥y y>3

x∈{4} y∈{4}

x≥y y>3

x∈{5} y∈{4,5}

x≥y y>3

x=4 x≠4

Distribution Strategy� Pick variable x with at least two values� Pick value n from domain of x� Distribute with
x=n and x≠n� Part of model

Search� Iterate propagation and distribution� Orthogonal: distribution � exploration� Nodes:
• Unsolved • Failed • Succeeded

SMM: Solution

MONEY=

MORE+

SEND

10652=

1085+

9567

Solving SMM in Oz� Program script� script implements model� unary procedure: argument (root variable) is
solution� Script� introduce variables� basic constraints� post constraints� create branching

6

Oz Script for SMM:
Solution and Basic Constraints

proc {SMM Sol}

S E N D M O R Y

in

Sol=smm(s:S e:E n:N d:D m:M o:O R:r y:Y)

Sol ::: 0#9

…

end

Oz Script for SMM:
Post Propagators

proc {SMM Sol}

…

{FD.distinct Sol}

S\=:0 M\=:0

1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E

=: 10000*M+1000*O+100*N+10*E+Y

…

end

Oz Script for SMM:
Distribution Strategy

proc {SMM Sol}

…

{FD.distribute naive Sol}

end

Complete Oz Script for SMM

proc {SMM Sol}

S E N D M O R Y

in

Sol=smm(s:S e:E n:N d:D m:M o:O R:r y:Y)

Sol ::: 0#9

{FD.distinct Sol}

S\=:0 M\=:0

1000*S+100*E+10*N+D

+1000*M+100*O+10*R+E

=: 10000*M+1000*O+100*N+10*E+Y

{FD.distribute naive Sol}

end

{ExploreOne SMM}� Use Oz Explorer� interactive, visual search� allows access to nodes in search tree� gain insight into propagation and distribution� Other engines available

Solving SMM in Oz Heuristics for Distribution� Which variable� least possible values (first-fail)� application dependent heuristic� Which value�minimum, median, maximum
x=m or x≠m� split with median m
x<m or x≥m� Problem specific

7

SMM: Solution With First-fail

MONEY=

MORE+

SEND

10652=

1085+

9567

Send Most Money (SMM++)� Find distinct digits for letters, such that

and MONEY maximal

MONEY=

MOST+

SEND

Best Solution Search� Naïve approach:� compute all solutions� choose best� Branch-and-bound approach:� compute first solution� add “betterness” constraint to open nodes� next solution will be “better”� prunes search space

Branch-and-bound Search� Find first solution

Branch-and-bound Search� Explore with additional constraint

Branch-and-bound Search� Explore with additional constraint

8

Branch-and-bound Search� Guarantees better solutions

Branch-and-bound Search� Guarantees better solutions

Branch-and-bound Search� Last solution best

Branch-and-bound Search� Proof of optimality

Modeling SMM++� Constraints and branching as before� Order among solutions with constraints� so-far-best solution S,E,N,D,M,O,T,Y� current node S,E,N,D,M,O,T,Y� constraint added
10000 ×M+1000 ×O+100×N+10×E+Y

<

10000 ×M+1000 ×O+100×N+10×E+Y

SMM++: Branch-and-bound

MONEY=

MOST+

SEND

10876=

1094+

9782

9

SMM++: All Solution Search

MONEY=

MOST+

SEND

10876=

1094+

9782

Summary

Modeling and Solving� Modeling� variables with domain� constraints to state relations� branching strategy� solution ordering� Solving� constraint propagation� constraint branching� search tree exploration

applications

principles

Constraint Programming in Oz� Script� implements constraint model� Solution order� defined by binary procedure� Exploration� interactive: Oz Explorer� search module: plain, best, parallel, …

Application Areas� Timetabling� Scheduling� Crew rostering� Resource allocation� Workflow planning and optimization� Gate allocation at airports� Sports-event scheduling� Railroad: track allocation, train allocation, schedules� Automatic composition of music� Genome sequencing� Frequency allocation� …

Why Does CP Matter?� Middleware for combining smart algorithmic
components (propagators)� scheduling� graphs� flows� …

…for strong propagation� Essential extra constraints…

…for flexibility

10

SMM: Strong Propagation

MONEY=

MORE+

SEND

10652=

1085+

9567

Significance� Constraint programming identified as a
strategic direction in computer science
research

[ACM Computing Surveys, December 1996]� Applications are ubiquitous

Modeling

Modeling Strategy� Understand problem� identify variables� identify constraints� identify optimality criterion� Attempt initial model simple� try on examples to assess correctness� Improve model much harder� scale up to real problem size

Modeling Techniques� Find variables and values� decrease symmetries� dual models: change values and variables� combine models: channeling� Increase propagation� strong methods� redundant (implied) constraints but non-
redundant propagation

Modeling Techniques� Remove useless solutions� symmetrical: symmetry breaking� same cost: dominance constraints� Good heuristic for distribution� which variable: size, degree, regret, …� how to split domains: single value, bisection,
…� in which order to split: minimum, median,
maximum, …

11

Oz and Mozart

Getting Started with Mozart� Use tutorial shipped with Mozart
Schulte, Smolka. Finite Domain Constraint
Programming in Oz. A Tutorial.� Little knowledge on Oz required� scripts are unary procedures� orders are binary procedures� introducing variables� conditional statements� calling functions and procedures� tuples (records) for solutions� loops for iterating over tuples

Mozart Features� Finite domain integers� general purpose: arithmetic, …� scheduling� Finite sets� Search: orthogonal exploration� basic + interactive + parallel + …� Tools� OPI, Explorer, Browser, Inspector, …

Mozart Advantages� Incremental and interactive development� understand problem and refine model� rich tool support� Integration with concurrency and distribution� multi agent applications� Well documented� Freely available� Programmable and Extensible

Programmable and Extensible� Programming [Oz]� scripts� distribution� exploration (Explorer, parallel search, …)� combination mechanisms� Extending [CPI in C++]� propagators� variables

Mozart Disadvantages� Small set of good propagators� "global constraints"� will worsen due to lack of contributors� Inflexible interface for propagators� unrealistic assumptions� Initial burden to learn Oz� Not easy to embed

12

Summary

Constraint Programming with
Mozart� Powerful technology for combinatorial

optimization� Mozart free, programmable, and accessible
system for constraint programming� requires more propagators� Most effort is in modeling (understanding)� not dependent on Oz and Mozart

