Constraint Programming with
| Mozart — An Appetizer

Christian Schulte

KTH — Royal Institute of Technology, Sweden
schulte@imit.kth.se

[Constraint Programming]

= Modeling and solving combinatorial
problems

start with a first toy problem

[Constraint Model for SMM]

= Variables and values
SENDMORY 0O {0,...9}

= Constraints

distinct(S,E,N,D,M,0,R,Y)
1000 xS+100xE+10xN+D

+ 1000 xM+100xO+10xR+E
= 10000 xM+1000xO+100xN+10xE+Y
S£0 \Y:0]

[Goal of Appetizer]

= Underlying principles

= Sketch of how to do in Oz

= Modeling techniques

= Mozart advantages and disadvantages

...no time for hands-on tutorial

[Send More Money (SMM)]

= Find distinct digits for letters, such that

SEND
+ MORE
= MONEY

[Solving SMM]

= Find values for variables
such that
all constraints satisfied

= Enumerate values, test constraints...
...poor: we can do better than that!

[Constraint Programming] [Propagation for SMM

= Compute with set of possible values = Results in
= as opposed to assignments S=9 EO{4,...7} N 0{5,...8} D 0{2,...,8}
= Prune impossible values M=1 0=0 RO{2...8tY 2.8}
= constraint propagation
= Search = Propagation alone not sufficient!
= distribute search tree of = create simpler sub-problems
simpler subproblems m distribution and exploration
= explore find solution in tree
[Overview] , .
. Principles:
= Principles c traint P ti
= constraint propagation ons raln ropaga on
= search) g

= Summary of principles and significance
= Modeling techniques
= Oz and Mozart

[Important Concepts] [Constraint Store

= Constraint store

= Basic constraint

= Propagator [x0{3,4,5} y0{3,4,5} }
= Non-basic constraint

= Constraint propagation

= Stores basic constraints
map variables to possible values

[Constraint Store] [Constraint Store

[dfe i coneere |

| x0{345) yOE34S5) | | xC@4s) yOR4S) |
= Stores basic constraints = Stores basic constraints
map variables to possible values map variables to possible values

= Domains: finite sets, real intervals, trees, ...

[Propagators] [Propagators
= Implement non-basic constraints X2y y>3
N /
distinct(x 1re-X n) [x0{3,4,5} y{3,4,5} J

X+2 xy=z

« smart algorithmic components = Amplify store by constraint propagation

[Propagators] [Propagators
X2y y>3 X2y y>3
AN / AN /
[x[{3,4,5} y[{3,4,5}] [x0{3,4,5} yOi{4,5} J

= Amplify store by constraint propagation = Amplify store by constraint propagation

[Propagators

X2y y>3

N /

[x0{3,4,5} yO{4,5}]

= Amplify store by constraint propagation

[Propagators
X2y y>3
AN /

[xO{4,5} yO{4,5}]

= Amplify store by constraint propagation

= Disappear when done (entailed)
= No more propagation possible

[Computation Space

x2y y>3

N /

[x0{4,5} yO{4,5}]

= Store with connected propagators

[Propagators
X2y y>3
AN /

[xoi4s) yous) |

= Amplify store by constraint propagation

[Propagators

X2y

N

[xO{4,5} yO{4,5} }

= Amplify store by constraint propagation

= Disappear when done (entailed)
= No more propagation possible

Principles: Search

[Important Concepts]

= Distribution

= Exploration

= Heuristics

= Best solution search

[Distribution Strategy]

= Pick variable x with at least two values
= Pick value n from domain of x
= Distribute with

X=n and X#N

= Part of model

[SMM: Solution]
SEND
+ MORE
= MONEY
9567

+ 1085
10652

[Distribution (Branching)]

X2)
R e

x0{4,5} y[{4,5}

X2)
e

xOf4} yo{a}

X2)
e

xO{5} yO{4,5}

= Yields spaces with additional constraints
= Enables further constraint propagation

[Search]

= lterate propagation and distribution
= Orthogonal: distribution & exploration

= Nodes:
* Unsolved « Failed < Succeeded
[Solving SMM in Oz]

= Program script
= scriptimplements model
= unary procedure: argument (root variable) is
solution
= Script
= introduce variables
= Dbasic constraints
= post constraints
= create branching

Oz Script for SMM:] Oz Script for SMM:]
[Solution and Basic Constraints [Post Propagators

proc {SMM Sol} proc {SMM Sol}
SENDMORY
in {FD.distinct Sol}
Sol=smm(s:S e:E n:N d:D m:M 0:0 Rir y:Y) S\=:0 M\=:0
Sol ::: 0#9 1000*S+100*E+10*N+D
+1000*M+100*O+10*R+E
end =: 10000*M+1000*O+100*N+10*E+Y
end
Oz Script for SMM:]]
[Distribution Strategy [Complete Oz Script for SMM
proc {SMM Sol} proc {SMM Sol}
SENDMORY
{FD.distribute naive Sol} in
end Sol=smm(s:S e:E n:N d:D m:M 0:0 Rir y:Y)
Sol ::: 0#9
{FD.distinct Sol}
S\=:0 M\=:0
1000*S+100*E+10*N+D
+1000*M+100*O+10*R+E

=:10000*M+1000*O+100*N+10*E+Y
{FD.distribute naive Sol}
end

[Solving SMM in Oz] [Heuristics for Distribution]

{ExploreOne SMM} 1 = Which variable
= least possible values (first-fail)
= application dependent heuristic
= Which value

= minimum, median, maximum

= Use Oz Explorer
= interactive, visual search

) Xx=m or X£m
n allgws a_cce§s to nodes |n_ search tr_ee_ _ = split with median m
= gain insight into propagation and distribution x<m or X>m

= Other engines available u Problem specific

[SMM: Solution With First-fail] [Send Most Money (SMM++)]

SEND = Find distinct digits for letters, such that
+ MORE
R — SEND
= MONEY
+ MOST
9567 = MONEY
+ 1085 J -~
— 10652 and VONEY maxima
[Best Solution Search] [Branch-and-bound Search]

= Nailve approach:
= compute all solutions
= choose best
= Branch-and-bound approach:
= compute first solution
= add “betterness” constraint to open nodes
= next solution will be “better”
= prunes search space

= Find first solution

[Branch-and-bound Search] [Branch-and-bound Search

= Explore with additional constraint = Explore with additional constraint

[Branch-and-bound Search] [Branch-and-bound Search]

= Guarantees better solutions = Guarantees better solutions

[Branch-and-bound Search] [Branch-and-bound Search]

*

= Last solution best = Proof of optimality

[Modeling SMM++] [SMM++: Branch-and-bound]

= Constraints and branching as before SEND
= Order among solutions with constraints + MOST
= so-far-best solution SENDMOT,Y = NMONEY

= current node SENDMOT,Y
= constraint added 9782

10000 xM+1000 xO+100 XN+10XE+Y

. e + 1094
= 10876

10000 xM+1000 xO+100 xN+10xE+Y

[SMM++: All Solution Search] e '”‘\

SEND Summary
+ MBT AS /
= MONEY —
9782

094
10876

[Modeling and S_] [Constraint Programming in Oz]

= Modeling = = Script
= variables with domain = implements constraint model
= constraints to state relations .
= Solution order

= branching strateg))
= solution ordering = defined by binary procedure

= Solving -= = Exploration
= constraint propagation = interactive: Oz Explorer
= constraint branching = search module: plain, best, parallel, ...

= search tree exploration

Automatic composition of music
Genome sequencing o
Frequency allocation ...for flexibility

= Essential extra constraints...

[Application Areas] [Why Does CP Matter?]
. ;ggzauﬁ:kngg = Middleware for combining smart algorithmic
= Crew rostering components (propagators)
= Resource allocation = scheduling
= Workflow planning and optimization = graphs
= Gate allocation at airports = flows
= Sports-event scheduling oo
= Railroad: track allocation, train allocation, schedules ...for strong propagation
u
u
u
u

[SMM: Strong Propagation] [Significance]

SEND = Constraint programming identified as a
+ MORE strategic direction in computer science
— NONEY research _
[ACM Computing Surveys, December 1996]
9567
+ 1085 = Applications are ubiquitous
= 10652
. [Modeling Strategy]
Modeling = Understand problem
= identify variables
o e = identify constraints
= identify optimality criterion
= Attempt initial model simple
= try on examples to assess correctness
= Improve model much harder
= scale up to real problem size
[Modeling Techniques] [Modeling Techniques]
= Find variables and values = Remove useless solutions
= decrease symmetries = symmetrical: synmetry breaking
= dual models: change values and variables = same cost: dominance constraints
= combine models: channeling = Good heuristic for distribution
= Increase propagation = which variable: size, degree, regret, ...
= strong methods = how to split domains: single value, bisection,
= redundant (implied) constraints but non-
redundant propagation = in which order to split: minimum, median,
maximum, ...

10

[Getting Started with Mozart]

Oz and Mozart =

[Mozart Features]

= Finite domain integers =
= general purpose: arithmetic, ...
= scheduling

= Finite sets -

= Search: orthogonal exploration "
= basic + interactive + parallel + ... n

= Tools "

OPI, Explorer, Browser, Inspector, ...

Use tutorial shipped with Mozart
Schulte, Smolka. Finite Domain Constraint
Programming in Oz. A Tutorial.

Little knowledge on Oz required

= scripts are unary procedures

orders are binary procedures

introducing variables

conditional statements

calling functions and procedures

tuples (records) for solutions

loops for iterating over tuples

[Mozart Advantages]

Incremental and interactive development
= understand problem and refine model
= rich tool support

Integration with concurrency and distribution
= multi agent applications

Well documented
Freely available
Programmable and Extensible

[Programmable and Extensible] [Mozart Disadvantages]
= Programming [Oz] = Small set of good propagators
= scripts = "global constraints"
= distribution = will worsen due to lack of contributors
= exploration (Explorer, parallel search, ...) = Inflexible interface for propagators
= corrtbination mechanismo = unrealistic assumptions
= Extending [CPlin C++] = Initial burden to learn Oz
= propagators
= variables = Not easy to embed

11

Summary

[

Constraint Programming with]
Mozart

= Powerful technology for combinatorial
optimization
= Mozart free, programmable, and accessible
system for constraint programming
= requires more propagators

= Most effort is in modeling (understanding)
= not dependent on Oz and Mozart

12

